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A general approach to simulate the mechanical behaviour of entangled materials submitted
to large deformations is described in this paper. The main part of this approach is the
automatic creation of contact elements, with appropriate constitutive laws, to take into
account the interactions between fibres. The construction of these elements at each
increment, is based on the determination of intermediate geometries in each region where
two parts of beams are sufficiently close to be likely to enter into contact. Numerical tests
simulating a 90% compression of nine randomly generated samples of entangled materials
are given. They allow the identification of power laws to represent the evolutions of the
compressive load and of the number of contacts.
C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Entangled materials, which are made of fibres arranged
together in various manners, usually exhibit a very spe-
cific and rather complex mechanical behaviour, char-
acterized in particular by non linear loading curves.
This complex behaviour originates from the contact-
friction interactions which develop between fibres of
such materials. Besides experimental studies, various
analytical and numerical approaches have been sug-
gested to explain and predict the mechanical behaviour
of these materials. In correlation with measures on
sheep wools, van Wyk [1] developed a model based
on the estimation of the mean distance between con-
tacts, and on the relation between the force and the
deflection of a fibre between two contacts. Toll [2, 3]
proposed a more complex theory, based in particular on
the analysis of the structure tensors which characterize
the morphology of the materials, and compared their
results with experimental data obtained on polymer fi-
bre masses. Baudequin et al. [4] derived a model from
an analytical and statistical reasoning, which is in very
good agreement with data issued from high compres-
sive tests on glass wool. As far as numerical approaches
are concerned, Beil and Roberts [5, 6] performed simu-
lations for moderate compressions of fibre assemblies.
Heyden [7] also used FE simulations in order to predict
the failure of cellulose fibre networks.

We present here a general approach for the simu-
lation of the mechanical behaviour of entangled ma-
terials, which has been designed for the consideration
of large displacements and deformations. We consider
samples of entangled materials as collections of fibres
in which contact-friction interactions between fibres
are taken into account as they occur. The specificity

of our method lies in the detection of contacts be-
tween beams undergoing large displacements. Contact-
friction interactions are taken into account at contact
elements which couple two material particles. The main
idea for the determination of these elements is the
construction of intermediate geometries in all regions
where parts of beams are close together and where con-
tact is likely to appear. These intermediate geometries
provide both with a geometric support for an a priori
discretization of the contact problem, and with normal
directions used for the contact search.

We present first the general setting of the problem
together with the large displacements 3D-beam model
used to represent the fibres, in order to write a princi-
ple of virtual works. Then, details are given about the
way contact elements are created between the beams
through the determination of intermediate geometries.
The mechanical behaviour considered for these contact
elements, in normal and tangential directions, is then
formulated. The next section is devoted to the genera-
tion of the random samples used for the tests. Finally,
we give numerical results for the simulation of a 90%
compression applied to nine randomly generated sam-
ples of entangled materials with three different crimps.
These results allow to identify the exponents of power
laws to describe the evolutions of the compressive load
and of the number of contacts.

2. Global problem setting
2.1. Beam model
We consider a collection of N fibres, described in a
fictitious reference configuration by straight cylinders.
The open set occupied in this configuration by the fibre
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Figure 1 Setting of the global problem.

i , characterized by its radius r (i) and its length l (i), is
denoted �

(i)
R , and defined by:

�
(i)
R = {

ξ = (ξ1, ξ2, ξ3) ∈ R
3; ξ1

2

+ ξ2
2 ≤ r (i)2

, 0 < ξ3 < L (i)
}
, (1)

Each material particle ξ is identified in this configura-
tion by its curvilinear abscissa ξ3 and its coordinates
(ξ1, ξ2) in the cross-section.

The kinematical beam model we use is characterized
by the following expression of the placement of the
particle ξ at time t :

x(ξ , t) = x0(ξ3, t) + ξ1g1(ξ3, t) + ξ2g1(ξ3, t). (2)

In this expression, x0(ξ3, t) is the placement of the cen-
troid of the cross-section, and the two vectors g1 and g2
may be viewed as directors of the cross-section. This
expression corresponds to a first order Taylor expansion
of the placement with respect to sections coordinates.
According to this model, the displacement of each par-
ticle, denoted u(ξ , t), and defined by

u(ξ , t) = x(ξ , t) − x(ξ , 0), (3)

can then be expressed

u(ξ , t) = u0(ξ3, t) + ξ1h1(ξ3, t) + ξ2h1(ξ3, t). (4)

The kinematics of each cross-section is thus described
by the mean of three vectors: the translation u0 of the
centroid, and two vectors h1 and h2 standing for the
variations of the cross-section directors. This kinemat-
ical model is able to represent not only shear strain in
the beam, but also planar deformations of the cross-
sections. It allows in particular the use of classical 3D
constitutive laws. In the following, we shall denote by
U the generalized beam displacement field constituted
by the three kinematical fields u0, h1 and h1:

U = (u0, h1, h2) . (5)

2.2. Principle of virtual work
The global problem is set in the form of a principle
of virtual work, which includes the virtual works of
all beams of the collection, and the virtual work of
contact-friction interactions between fibres. Defining
for each beam a set of kinematically admissible gener-
alized displacement fields V (i)

ad satisfying the boundary
conditions applied to its extremities, we express the
global problem as follows:

Find (U(1), . . . , U(N )) ∈ V (1)
ad × · · · ×V (N )

ad , such that,
∀(V(1), . . . , V(N )) ∈ V (1)

ad × · · · × V (1)
ad , we have:

N∑

i=1

W (i)
int

(
U(i), V(i))

+ Wcf
(
U(1), . . . , U(N ), V(1), . . . , V(N )) = 0. (6)

In the above equation, the virtual work of internal
forces for each fibre is expressed in the following way,
using a total Lagragian formulation:

W (i)
int (U, V) =

∫

�
(i)
0

Tr

(
s(U)

DE
DU

.V
)

dω (7)

where U is the generalized displacement field, V, the
corresponding virtual field, E is the Green-Lagrange
strain tensor and s the second Piola-Kirchhoff stress
tensor.

The purpose of the next sections is the expression of
the virtual work of contact-friction interactions Wcf .

3. Detection of contacts within a collection of
fibres

The detection of contacts between fibres is one of the
main difficulties of the problem. In the media consid-
ered here, since the geometry and the arrangement of
fibres evolve continuously, contact may appear or dis-
appear anywhere, and at any time, and the number of
contacts increases as the medium is densified.
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Figure 2 Proximity zone and intermediate geometry.

3.1. General presentation of the method
The method we suggest to treat the contact in such me-
dia, and which will be developed below, is based on an
a priori discretization of the contact problem, defined
on intermediate geometries that are constructed in all
regions where two parts of fibres are close together.
This approach is motivated by the following reasons.
First, as far as the discretization is concerned, within
a continuous framework, contact would be defined as
two parts of surfaces of fibres having coincident po-
sitions. However, interpolated surfaces, such as that
encountered in meshes, can not adjust exactly to each
other in the general case, and consequently, contact
conditions between these surfaces can only be checked
at some discrete points. Starting from this point, we
choose to set the contact problem in a discretized way,
that is to check contact between fibres only at some
discrete points that will be defined depending only on
geometrical criteria.

The second point, which is also related to the dis-
cretization, is that contact interactions between fibres,
especially at crossings between them, are localized at
very precise places, that do not necessarily coincide
with nodes or other particular points of the meshes.
This means that the contact detection must be indepen-
dent on the positions of the nodes.

The last motivation for our method deals with the
question of the contact search direction used to asso-
ciate points of the structure that are predicted to enter
into contact. Usually, in classical methods, the normal
direction to one surface is used to search a contact on the
opposite surface. This choice may reveal not suitable
for structures with high curvatures, where the normal
directions have large variations. Moreover, it leads to a
treatment which is non symmetrical with respect to the
two opposite geometries. To improve the choice of the
contact search direction, it seems desirable to make this
direction depend on both opposite geometries. A good
way to achieve this is to consider the geometry corre-
sponding to the average of the potentially contacting
surfaces, and to take the normal direction to this inter-
mediate geometry as the contact search direction.

For the case of beams, this intermediate geometry
reduces to a part of line, defined as the average of
two portions of lines of centroids of beams which are
declared to be close to each other. The normal directions

to this geometry are given by planes orthogonal to this
line.

3.2. Determination of proximity zones and
intermediate geometries

We define proximity zones as parts of lines of centroids
of beams which are close to each other. To determine
them, for each pair of fibres in the collection, we calcu-
late the distances between points regularly distributed
on one of the lines of centroids, and their corresponding
closest point on the other line. The intervals of curvi-
linear abscissa delimited by successive pairs of close
points define a pair of close parts of lines (see Fig. 2).
Some corrections may be necessary in order these two
parts of line are oriented in the same direction, have
a minimal length and are nearly centered on the mini-
mal distance between them. At the end of this process,
we obtain a set of proximity zones, denoted Pm , and
defined by

Pm = [
a(i), b(i)

] × [
a( j), b( j)

]
, (8)

where [a(i), b(i)] and [a( j), b( j)] are two intervals of
curvilinear abscissa defined on beams i and j .

The intermediate geometry �int associated with this
proximity zone is defined as the average of the close
parts of line. The position of any point c on this geom-
etry, at the relative abscissa s, is defined by

c(s) = 1

2

[
x(i)

0

(
(1 − s)a(i) + sb(i)

)

+ x( j)
0

(
(1 − s)a( j) + sb( j)

)]
(9)

The tangent to the intermediate geometry at the relative
abscissa s, Tc(s), is obtained by derivating the above
expression.

3.3. Construction of contact elements on
intermediate geometries

The discretization of the contact problem is obtained by
distributing on the intermediate geometry a given num-
ber Nc of points where the contact has to be checked.
Each contact checking point, denoted ck , is defined by
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Figure 3 Determination of the particles of a contact element.
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Figure 4 Generation of random segments.

its relative abscissa sk = (k − 1)/(Nc − 1) on the inter-
mediate geometry.

In the equilibrium configuration, the contact element
at the point ck , denoted Ec(ck) would be defined as the
couple of material particles localized at this point:

Ec(ck) = (
ξ (i), ξ ( j)) ∈ �

(i)
R × �

( j)
R , such that

x(i)(ξ (i)) = x( j)(ξ ( j)) = ck . (10)

However, for the out-of-equilibrium configurations we
have to deal with during the iterations of the non linear
algorithm, contact conditions are generally not satis-
fied. In this case, the particles constituting the contact
elements can no longer be characterized by their iden-
tical positions ; they can only be determined through
predictions. To predict which particles will enter into
contact at a given point of the intermediate geometry,
we proceed in the following way. First, the centroids
cross-sections candidate to contact are located at the
intersections with the normal plane to the intermediate
geometry at ck (see Fig. 3). Then, in a second step,
the particles of the contact element are chosen on the
border of these cross-sections, using the projection on
each cross-section of the direction between the two
centroids.

3.4. Determination of the contact normal
direction

The contact normal direction is used in the expressions
of the normal gap and of the tangential relative dis-
placement used to determine contact-friction interac-

corresponding
extremities

Figure 5 Cutting of the random line to have corresponding extremities
between fibres.

tions. The determination of this unit vector, whose part
is to give the direction of contact, is of great importance
to prevent the fibres to go across each other. A good
choice for this direction is to take, near the crossing be-
tween fibres, the vector product between the tangents to
the lines of centroids. At a certain distance from cross-
ings, or when fibres are almost parallel, it is possible to
take for this vector the direction between the centroids
of cross-sections in interaction. If we denote N this
contact normal direction, the linearized contact condi-
tion for the contact element Ec(ck) may be expressed
as follows:

gap(Ec(ck)) = (
x(i)

(
ξ (i)) − x( j)

(
ξ ( j)), N(Ec(ck))

) ≥ 0.

(11)

As far as the tangential part is concerned, we use the
same vector to define the tangential relative displace-
ment [U]T (Ec(ck)):

[U]T (Ec(ck)) = [I − N(Ec(ck)) ⊗ N(Ec(ck))]

× (
U(i)(ξ (i)) − U( j)(ξ ( j))).

(12)

4. Virtual work of contact-friction interactions
The virtual work of contact-friction interactions for the
contact element Ec(ck) is expressed in the following
way

Wcf (Ec(ck)) = (RN (gap(Ec(ck)))N

+ RT ([U]T (Ec(ck))), V(i)(ξ (i)) − V( j)(ξ ( j))

(13)

where RN is the norm of the normal reaction, and RT

the tangential frictional reaction.
As far as the normal behaviour is concerned, the

normal reaction RN is expressed in function of the gap
using a regularized penalty method:

if gap ≥ 0; RN (gap) = 0, (14)

if gr ≤ gap < 0; RN (gap) = kN

2gr
gap2, (15)
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Figure 6 Initial and final configurations of the nine samples for the three different crimps.

if gap < gr ; RN (gap) = kN

(
gap + gr

2

)
. (16)

In this expression, kN is the penalty coefficient, and
gr the regularization threshhold. This regularization,
for very small penetrations, makes the reaction depend
quadratically on the gap, which ensures the continuity
of its derivate at the origin.

For the tangential components, we use a regular-
ized Coulomb’s law, which allows a small reversible
displacement before the pure sliding occurs. The tan-
gential reaction is expressed as follows as function of

the tangential relative displacement:

if[U]T (Ec(ck)) ≤ uT,rev, RT (Ec(ck))

= µ‖RN ‖
uT,rev

[U]T (Ec(ck)) (17)

else RT (Ec(ck)) = µ‖RN ‖
‖[U]T ‖ [U]T (Ec(ck)) (18)

where µ denotes the Coulomb’s friction coefficient,
and uT,rev is the reversible tangential displacement.

5945



MECHANICAL BEHAVIOR OF CELLULAR SOLIDS

Adaptation of the penalty coefficient. In order to sta-
bilize the algorithm, the penalty coefficient is adapted,
for each proximity zone, in such a way that the max-
imum penetration among all contact elements of this
zone remains inferior to a given value. This is very use-
ful since resultant reactions may vary largely from one
zone to another, and during the loading.

5. Generation of random periodic samples for
the simulation

The generation of the samples for the simulation must
fulfill two requirements: the random geometries of the
fibres have to satisfy some criteria such as the crimp
and the structure of these samples must be adapted to
the application of periodic boundary conditions.

5.1. Generation of random lines
The geometries of the fibres are parts of a global ran-
dom line. To build this line, as a first step, a series of
straight segments is generated. Each of these segment
is characterized by its length li , and two angles, αi

and θi which may be viewed as a torsion angle and a
a bending angle with respect to the previous segment
(see Fig. 4). To create the line, the three parameters of
these segments are randomly taken in given intervals
of variation. To obtain different crimps, we keep the
intervals of variation for the length and the torsion an-
gle constant, but make the interval for the bending angle
θ vary. Finally, to get a line with a C2 regularity, this
series of points is smoothed by the means of B-splines.

5.2. Adaptation to the application of
periodic boundary conditions

A good way to facilitate the application of periodic
conditions on samples of entangled materials is to have

correspondances between extremities of fibres on op-
posite faces of the sample. To achieve this, having de-
fined the box that will contain the sample to be created,
we start by placing the random line at one point on a
face of the sample. Then, the line is cut each time it
goes through a face, and the remaining of the line is
placed at the same position on the opposite face (see
Fig. 5). In this way, except for the first and last ex-
tremities, each extremity of a fibre has a corresponding
extremity on the opposite face, at the same relative lo-
cation, and with the same orientation with respect to the
face.

6. Numerical results
6.1. Objectives
To illustrate the performances of the methodology pre-
sented here, tests have been run on nine randomly gen-
erated samples of entangled media. Through these tests,
we aim at identifying constitutive laws for the com-
pressive behaviour of such materials, while studying
the influence of the crimp on the results.

6.2. Characteristics of the samples
For the tests, we have taken arbitrary fixed values for
the mechanical characteristics. Geometrical character-
istics, which are more important regarding the results,
are summarized in Table I. To obtain different crimps,
we have taken three ampltiudes of variation, 60◦, 90◦
and 120◦, for the bending angle θ introduced in the

T AB L E I Geometrical characteristics of samples

Sample size 1 × 1 × 1
Fibres radius 0.015
Initial volume fraction 2%
Number of fibres per sample ≈ 50
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Figure 7 Comparison of loading curves with van Wyk’s theory.
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generation of the basic random line (see Section 5.1).
Three random samples have been generated for each
crimp. The samples comprise about 50 fibres, and a
friction coefficient of 0.2 has been considered.

6.3. Discussion about the results
The nine samples have been submitted to a 90 %
compression (Fig. 6). Loading curves for each sample
present some irregularities and instabilities, but they
behave globally in the same way. In order to identify
constitutive laws we have plotted the variations of the
compressive load versus different quantities. Accord-

ing to van Wyk’s model [1], this load is proportional
to φ3 − φ3

0 , where φ and φ0 are respectively the initial
and the current volume fraction of fibres. The curves
on Fig. 7 show a better agreement with this model as
the crimp is higher.

We found a better correlation between the loading
curve and the relative variation of the volume fraction,
namely (φ − φ0)/φ0. The results plotted on Fig. 8 tend
to indicate that, until 85% of compression, the vertical
load F follows the law

F ∝
(

φ − φ0

φ0

) 3
2

. (19)
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Figure 8 Evolutions of the compressive load versus the relative variation of volume fraction.
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Figure 9 Fitting of the loading curves for high compressions.
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Figure 10 Comparison between the evolutions of numbers of contacts versus volume fraction.

Here again, we obtain a better fitting with this expres-
sion as the crimp is higher. For larger compressions,
the exponent of the power law increases up to 5.

Baudequin et al. [4] studied more precisely the be-
haviour of samples of glass wool at high compres-
sions. From their analytical model and their experi-
mental data, they derived the following expression of
the vertical load

F ∝
(
ε� − ε

)− 3
2 (20)

where ε is the compressive deformation and ε� is the
maximum compressive strain, which they estimate to
be equal to 0.96. Plotting the variation of the vertical
load versus ε� − ε (see Fig. 9), our numerical results
appear also in good agreement with this prediction.
This should have been expected as formulae (19) and
(20) are very close as ε� goes to 1.

Finally, the curves describing the evolution of the
number of contacts during the loading (Fig. 10) show
that this number, denoted nct , is proportional to the
volume fraction of fibres to the power 2/3:

nct ∝ φ
2
3 (21)

7. Conclusion
Our approach to take into account contact-friction in-
teractions within a collection of 3D beams, based on
the determination of intermediate geometries to gen-
erate automatically contact elements, has proven its

ability to simulate the mechanical behaviour of general
entangled materials submitted to large transformations.
The results of the tests performed on nine random sam-
ples allow the identification of exponents of power laws
to represent the evolutions of the compressive load and
of the number of contacts. In particular, it has been
shown that for these cases, and for moderate compres-
sions, the compressive load evolves as the relative vari-
ation of volume fraction to the power 3/2.
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